Subject programme

- 1. Subject name / subject module: Engineering Project
- 2. Lecture language: English
 - 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Ocetkiewicz Tomasz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																		
Mode		Form of classes												Total					
of study		PWS	ECTS	Project work	PWS	ECTS		PWS	ECTS		PWS	ECTS	Project work – student hours	ects	 PWS	ECTS	 PWS	ECTS	ECTS
Full-time studies				16	76	4							8						4
Part-time studies						4													4
Credit rigor				gra assigi	ded hment	t													

6. Student workload – ECTS credits balance 1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in project work	16/0
Participation in student hours	8/0
Preparation of engineering project	74/0
Participation in an exam / graded assignment / final grading	2/0
Total student workload (TSW)	100/0
ECTS credits	4
* Student's workload related to practical forms	100/0
Student's workload in classes requiring direct participation of academic teachers	24/0

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Specific learning outcomes for the subject		Form	Teaching method	Methods for testing of		
Outcome symbol	Outcome description			(checking, assessing) learning outcomes		
		Knowle	edge			
к_woз	Student has sufficient knowledge in the field of mechanical engineering, necessary to understand at an advanced level the complex relationships between mechatronic systems and use this knowledge to select appropriate methods, tools, and components	Project work	inquiry methods	Engineering project assessment, active participation in-class.		
K_W05	Student has adequate knowledge of automation, control systems, electronics, and electrical engineering, necessary to					

Subject programme

Jubje	ct programme			
	understand at a sufficient level the complex			
	dependencies in mechatronic systems and to			
	use this knowledge to prepare solutions for			
	engineering tasks.			
	Student possesses sufficient knowledge of			
	selected issues in the field of applied			
	computer science related to programming,			
K_W06	software design, computer networks,			
	databases, engineering graphics to prepare			
	engineering projects.			
	Student possesses sufficient knowledge of			
K_W07	selected issues in the field of mechanical			
<u>n_110</u> ,	engineering to prepare engineering projects.			
	Student possesses sufficient knowledge of			
	selected issues in the field of automation,			
	control engineering, electronics, and			
K_W08	electrical engineering, to solve an			
	engineering problem defined as a design of			
	· · · ·			
	an automation system, a controller, a robot.			
	Student possesses sufficient knowledge to			
K_W09	understand the parameters and properties of			
-	components and materials that can be used			
	to solve an engineering task.			
	Student possesses sufficient knowledge of			
K W11	technical standards and norms commonly			
-	used in technical solutions for prototyping of			
	electronics devices, and about their life-cycle.			
	Student possesses sufficient knowledge to			
	understand the issues related to obtaining			
K_W12	information using distance learning methods			
	and is able to use this knowledge to prepare			
	an engineering project.			
		Skill	s	
	Student is able to obtain information through		inquiry methods	Engineering project assessment, active
	the selection of sources, interpret the data,			participation in-class.
K_U01	prepare a critical analysis, synthesize data,	Project work		
	and draw conclusions to solve an engineering			
	problem.			
	Student possesses sufficient skills to			
K_U02	formulate and solve problems and perform			
-	tasks required to solve engineering tasks.			
	Student has adequate skills to use the norms			
K_U05	and standards applicable for preparing			
	solutions to engineering problems.			
	solutions to engineering problems.		I	

9. Assessment rules / criteria for each form of education and individual grades

0% - 60%	ndst	81% - 90%	db
61% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Final project	5 bdb	5*100%	5,0

10. The learning contents with the form of the class activities on which they are carried out

Project work

- 1. Preparation of an engineering project adapted to the area of studies in the field of computer science nad mechatronics.
- 11. Required teaching aids

Specialist laboratory

- **12.** Literature:
 - **a.** Basic literature:
 - Blum J.; Exploring Arduino ; tools and techniques for engineering wizardry; ISBN 978-1-118-54936-0; Wiley 2013
 - Bob Dukish; Coding the Arduino; ISBN 978-1-4842-3510-2; Apress, Berkeley, CA 2018
 - M. Daud Alam, Uwe F. Gühl; Project-Management in Practice; ISBN 978-3-662-52944-7; Springer 2016
 - **b.** Supplementary literature:
 - Tianhong Pan, Yi Zhu ; Designing Embedded Systems with Arduino; ISBN 978-981-10-4418-2; Springer 2018
 - Indira Knight; Connecting Arduino to the Web; ISBN 978-1-4842-3480-8; Apress, Berkeley, CA 2018
 - Jeff Cicolani; Beginning Robotics with Raspberry
 - **c.** Internet sources:
 - Sparkfun Tutorial learn.sparkfun.com
 - Arduino Language Reference www.arduino.cc/reference/en
 - Forbot Kurs Arduino forbot.pl/blog/kurs-arduino-srodowisko-jak-zaczac-programowac-id936
 - Forbot Kurs Arduino II forbot.pl/blog/kurs-arduino-ii-wstep-spis-tresci-id15494
 - Adafruit Learn learn.adafruit.com
 - Arduino Library List www.arduinolibraries.info
 - Last Minute Engineers Tutorials lastminuteengineers.com/electronics/arduino-projects/
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname			
1. Project work	Ocetkiewicz Tomasz, mgr inż.			